Advertisement Remove all ads
Advertisement Remove all ads
Sum
Show that : `int _0^(pi/4) "log" (1+"tan""x") "dx" = pi /8 "log"2`
Advertisement Remove all ads
Solution
Let I = `int _0^(pi/4) "log" (1+"tan""x") "dx"`
= `int _0^(pi/4) "log" { 1+ "tan"(pi/4-"x")}"dx"`
`(because int _0^"a" "f"("x") "dx" = int "f" ("a" -"x") "dx") `
= `int _0^(pi/4) "log" {1+(("tan" pi /4 -"tan""x"))/(1+ "tan" pi/4"tan""x" }}"dx"`
`=int _0^(pi/4) {1+(1-"tan""x")/(1+"tan""x")} "dx"`
`=int _0^(pi/4) "log"{(1+"tan""x" + 1-"tan""x")/(1 + "tan""x")} "dx"`
`=int_0^(pi/4) "log"(2/(1 + "tan""x")) "dx"`
`=int_0^(pi/4) {"log"2 -"log"(1+"tan""x")}"dx" `
`=int_0^(pi/4) "log" 2 "dx" - int_0^(pi/4) "log"(1+"tan""x") "dx"`
`"I" = "log"2["x"]_0^(pi/4) - "I"`
`2"I" = "log"2[pi/4-0]`
`"I" = pi /8 . "log"2`
`therefore int_0^(pi/4) "log"(1+ "tan""x")"dx" = pi/8"log"2`
Concept: Properties of Definite Integrals
Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads