Advertisement Remove all ads

Show that : - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

 Show that : `int _0^(pi/4) "log" (1+"tan""x") "dx" = pi /8 "log"2`

Advertisement Remove all ads

Solution

Let I = `int _0^(pi/4) "log" (1+"tan""x") "dx"`

= `int _0^(pi/4) "log" { 1+ "tan"(pi/4-"x")}"dx"`   

 `(because  int _0^"a" "f"("x") "dx" = int  "f" ("a" -"x") "dx") `

= `int _0^(pi/4) "log" {1+(("tan" pi /4  -"tan""x"))/(1+ "tan" pi/4"tan""x" }}"dx"`

`=int _0^(pi/4) {1+(1-"tan""x")/(1+"tan""x")} "dx"`

`=int _0^(pi/4) "log"{(1+"tan""x" + 1-"tan""x")/(1 + "tan""x")} "dx"`

`=int_0^(pi/4) "log"(2/(1 + "tan""x")) "dx"`

`=int_0^(pi/4) {"log"2 -"log"(1+"tan""x")}"dx" `

`=int_0^(pi/4) "log"  2  "dx"  - int_0^(pi/4) "log"(1+"tan""x") "dx"`

`"I" = "log"2["x"]_0^(pi/4) - "I"`

`2"I" = "log"2[pi/4-0]`

`"I" = pi /8 . "log"2`

`therefore int_0^(pi/4) "log"(1+ "tan""x")"dx" = pi/8"log"2`

Concept: Properties of Definite Integrals
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×