Advertisement Remove all ads

Show that the Points (A, B, C), (B, C, A) and (C, A, B) Are the Vertices of an Equilateral Triangle. - Mathematics

Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 

Advertisement Remove all ads

Solution

Let A(a,b,c) , B(b,c,a) and C(c,a,b) be the vertices of \[\bigtriangleup ABC\] Then,AB =\[\sqrt{\left( b - a \right)^2 + \left( c - b \right)^2 + \left( a - c \right)^2}\] 

\[= \sqrt{b^2 - 2ab + a^2 + c^2 - 2bc + b^2 + a^2 - 2ca + c^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
BC =\[\sqrt{\left( c - b \right)^2 + \left( a - c \right)^2 + \left( b - a \right)^2}\]

\[= \sqrt{c^2 - 2bc + b^2 + a^2 - 2ca + c^2 + b^2 - 2ab + a^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
CA =\[\sqrt{\left( a - c \right)^2 + \left( b - a \right)^2 + \left( c - b \right)^2}\]

\[= \sqrt{a^2 - 2ca + c^2 + b^2 - 2ab + a^2 + c^2 - 2bc + b^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
\[\therefore\]AB = BC CA
Therefore,\[\bigtriangleup ABC\] is an equilateral triangle.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 18 | Page 10
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×