Advertisement Remove all ads

# Show that the Points A(2,1), B(5,2), C(6,4) and D(3,3) Are the Angular Points of a Parallelogram. is this Figure a Rectangle? - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Show that the points A(2,1), B(5,2), C(6,4) and D(3,3) are the angular points of a parallelogram. Is this figure a rectangle?

Advertisement Remove all ads

#### Solution

The given points are s A(2,1), B(5,2), C(6,4) and D(3,3)

AB = sqrt((5-2)^2 +(2-1)^2 ) = sqrt((3)^2 +(1)^2 ) = sqrt(9+1) = sqrt(10)  units

BC = sqrt((6-5)^2 +(4-2)^2 )= sqrt((1)^2 +(2)^3) = sqrt(1+4) = sqrt(5) units

CD = sqrt((3-6)^2 +(3-4)^2) = sqrt((-3)^2 +(-1)^2) = sqrt(9+1) = sqrt(10) units

AD = sqrt((3-2)^2+(3-1)^2) = sqrt((1)^2 +(2)^2) = sqrt(1+4) = sqrt(5)  units

Thus,  AB = CD = sqrt(10)  "units and " BC= AD = sqrt(5)  units

So, quadrilateral ABCD is a parallelogram

Also , AC = sqrt((6-2)^2 +(4-1)^2) = sqrt((4)^2 +(3)^2 )= sqrt(16+9) = sqrt(25) = 5  units

BD = sqrt((3-5) ^2 +(3-2)^2 ) = sqrt((-2)^2 +(1)^2) = sqrt(4+1) = sqrt(5)  units

But diagonal AC is not equal to diagonal BD. Hence, the given points do not form a rectangle.

Concept: Coordinate Geometry
Is there an error in this question or solution?

#### APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 16 Coordinate Geomentry
Q 30

#### Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?