###### Advertisements

###### Advertisements

Show that the points are the vertices of an isosceles right triangle.

###### Advertisements

#### Solution

The given points are A (3, 0), B(6, 4) and C(-1, 3) Now,

`AB = sqrt((3-6)^2 +(0-4)^2 ) = sqrt((-3)^2 +(-4)^2)`

`= sqrt((9+16)) = sqrt(25) = 5`

`BC = sqrt((6+10)^2 +(4-3)^2 )= sqrt((7)^2+(1)^2)`

`=sqrt(49+1) = sqrt(50) = 5 sqrt(2)`

`AC = sqrt((3+1)^2 +(0-3)^2) = sqrt((4)^2 + (-3)^2)`

`= sqrt(16+9) = sqrt(25) =5`

`∵AB +AC and AB^2 +AC^2 = BC^2`

Therefore,A (3, 0), B(6, 4) and C(-1, 3) are die vertices of an isosceles right triangle

#### APPEARS IN

#### RELATED QUESTIONS

In Fig. 8, the vertices of ΔABC are A(4, 6), B(1, 5) and C(7, 2). A line-segment DE is drawn to intersect the sides AB and AC at D and E respectively such that `(AD)/(AB)=(AE)/(AC)=1/3 `Calculate th area of ADE and compare it with area of ΔABCe.

If A(−4, 8), B(−3, −4), C(0, −5) and D(5, 6) are the vertices of a quadrilateral ABCD, find its area.

Prove that the points (a, b + c), (b, c + a) and (c, a + b) are collinear

**Find the area of a triangle with vertices at the point given in the following:**

(1, 0), (6, 0), (4, 3)

**Find the area of a triangle with vertices at the point given in the following:**

(2, 7), (1, 1), (10, 8)

**Find the area of a triangle with vertices at the point given in the following:**

(−2, −3), (3, 2), (−1, −8)

Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear.

Find values of k if area of triangle is 4 square units and vertices are (−2, 0), (0, 4), (0, k)

Find equation of line joining (1, 2) and (3, 6) using the determinant.

Find equation of line joining (3, 1) and (9, 3) using determinant.

**Find the area of the following triangle:**

**Find the missing value:**

Base |
Height |
Area of triangle |

15 cm | ______ | 87 cm^{2} |

ΔABC is isosceles with AB = AC = 7.5 cm and BC = 9 cm (see the given figure). The height AD from A to BC, is 6 cm. Find the area of ΔABC. What will be the height from C to AB i.e., CE?

The area of a triangle is 5. Two of its vertices are (2, 1) and (3, −2). The third vertex lies on y = x + 3. Find the third vertex.

If G be the centroid of a triangle ABC and P be any other point in the plane, prove that PA^{2}+ PB^{2} + PC^{2} = GA^{2} + GB^{2} + GC^{2} + 3GP^{2}.

Find the area of a triangle whose sides are 9 cm, 12 cm and 15 cm ?

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42cm ?

In a ΔABC, AB = 15 cm, BC = 13 cm and AC = 14 cm. Find the area of ΔABC and hence its altitude on AC ?

The perimeter of a triangular field is 540 m and its sides are in the ratio 25 : 17 : 12. Find the area of the triangle ?

Find the area of the blades of thc magnetic compass shown in Fig.. 12.27. (Take √11 = 3.32).

Show that the following points are collinear:

(i) A(2,-2), B(-3, 8) and C(-1, 4)

Show that the following points are collinear:

A(-5,1), B(5, 5) and C(10, 7)

Find the value(s) of *p* for which the points (3*p* + 1, *p*), (*p* + 2, *p* – 5) and (*p* + 1, –*p*) are collinear ?

Using determinants, find the values of k, if the area of triangle with vertices (–2, 0), (0, 4) and (0, k) is 4 square units.

In ☐ ABCD, l(AB) = 13 cm, l(DC) = 9 cm, l(AD) = 8 cm, find the area of ☐ ABCD.

Using integration, find the area of the triangle whose vertices are (2, 3), (3, 5) and (4, 4).

Using integration, find the area of triangle ABC, whose vertices are A(2, 5), B(4, 7) and C(6, 2).

What is the area of a triangle with base 4.8 cm and height 3.6 cm?

Find the area of the following triangle:

In ∆PQR, PR = 8 cm, QR = 4 cm and PL = 5 cm.

Find:

(i) the area of the ∆PQR

(ii) QM.

If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

20 cm | 40 cm | ? |

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

5 feet | ? | 20 sq.feet |

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

? | 12 m | 24 sq.m |

A field is in the shape of a right angled triangle whose base is 25 m and height 20 m. Find the cost of levelling the field at the rate of ₹ 45 per sq.m^{2}

If Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ_{1} = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, then prove that ∆ + ∆_{1} = 0.

In a triangle ABC, if `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, then prove that ∆ABC is an isoceles triangle.

Let ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`and ∆_{1} = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, then ______.

If A, B, C are the angles of a triangle, then ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______.

The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq.units. The value of k will be ______.

The value of the determinant `abs((1,"x","x"^3),(1,"y","y"^3),(1,"z","z"^3))` is ____________.

If the points (3, -2), (x, 2), (8, 8) are collinear, then find the value of x.

If the points (a_{1}, b_{1}), (a_{2}, b_{2}) and(a_{1} + a_{2}, b_{1} + b_{2}) are collinear, then ____________.

If the points (2, -3), (k, -1), and (0, 4) are collinear, then find the value of 4k.

Let `Delta = abs (("x", "y", "z"),("x"^2, "y"^2, "z"^2),("x"^3, "y"^3, "z"^3)),` then the value of `Delta` is ____________.

Find the coordinates of the point Q on the x-axis which lies on the perpendicular bisector of the line segment joining the points A(–5, –2) and B(4, –2). Name the type of triangle formed by the points Q, A and B.

If `D((-1)/2, 5/2), E(7, 3)` and `F(7/2, 7/2)` are the midpoints of sides of ∆ABC, find the area of the ∆ABC.

The area of a triangle with base 4 cm and height 6 cm is 24 cm^{2}.

The area of ∆ABC is 8 cm^{2} in which AB = AC = 4 cm and ∠A = 90º.

The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm, respectively. The area of the parallelogram is 30 cm^{2}.

The area of a trapezium is 475 cm^{2} and the height is 19 cm. Find the lengths of its two parallel sides if one side is 4 cm greater than the other.

A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

The area of a triangle with vertices A, B, C is given by ______.

Ratio of areas of ∆MNO, ∆MOP and ∆MPQ in the given figure is ______.

In the given figure, ΔMNO is a right-angled triangle. Its legs are 6 cm and 8 cm long. Length of perpendicular NP on the side MO is ______.

In the given figure, ratio of the area of triangle ABC to the area of triangle ACD is the same as the ratio of base BC of triangle ABC to the base CD of ΔACD.

Ratio of the area of ∆WXY to the area of ∆WZY is 3:4 in the given figure. If the area of ∆WXZ is 56 cm^{2} and WY = 8 cm, find the lengths of XY and YZ.

In the given figure, area of ΔPQR is 20 cm^{2} and area of ΔPQS is 44 cm^{2}. Find the length RS, if PQ is perpendicular to QS and QR is 5 cm.

Let a vector `αhati + βhatj` be obtained by rotating the vector `sqrt(3)hati + hatj` by an angle 45° about the origin in counter-clockwise direction in the first quadrant. Then the area of triangle having vertices (α, β), (0, β) and (0, 0) is equal to ______.

Using determinants, find the area of ΔPQR with vertices P(3, 1), Q(9, 3) and R(5, 7). Also, find the equation of line PQ using determinants.