Show that the points (1, –1, 3) and (3, 4, 3) are equidistant from the plane 5x + 2y – 7z + 8 = 0 - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Show that the points (1, –1, 3) and (3, 4, 3) are equidistant from the plane 5x + 2y – 7z + 8 = 0

Advertisement Remove all ads

Solution

Let p1 and p2 be the distances of points `hati-hatj+3hatk and 3hati+4hatj+3hatk` from `bar r.(5hati+2hatj-7hatk)+8=0`

The distance of the point A with position vector a from the plane `barr.barn` = p is given by

`d=|bara.barn-p|/|barn|`

`therefore p_1=|(hati-hatj+3hatk).(5hati+2hatj-7hatk)-(-8)|/sqrt(5^2+2^2+(-7)^2)`

=`|1(5)-1(2)+3(-7)+8|/sqrt(25+4+49)`

=`|5-2-21+8|/sqrt(78)=|-10|/sqrt78=10/sqrt78`

`and p_2=|()()-(-8)|/sqrt(5^2+2^2+(-7)^2)`

=`|3(5)+4(2)+3(-7)+8|/sqrt(25+4+49)`

=`|15+8-21+8|/sqrt78`

=`10/sqrt78`

∴ p1 = p2
Hence, points are equidistant from the plane.

Concept: Distance of a Point from a Plane
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

Share
Notifications



      Forgot password?
View in app×