Maharashtra State BoardHSC Science (Electronics) 11th
Advertisement Remove all ads

Show that lines x − 2y − 7 = 0 and 2x + y + 1 = 0 are perpendicular to each other. Find their point of intersection - Mathematics and Statistics

Sum

Show that lines x − 2y − 7 = 0 and 2x + y + 1 = 0 are perpendicular to each other. Find their point of intersection

Advertisement Remove all ads

Solution

Slope of the line x − 2y − 7 = 0 is

m1 = `-"coefficient of x"/"coefficient of y" = -1/((-2)) = 1/2`

Slope of the line 2x + y + 1 = 0 is

m2 = `-"coefficient of x"/"coefficient of y" = 2/1` = − 2

Since m1 = m2 = `1/2(-2)` = − 1 the lines are perpendicular to each other.

To find the point of intersection, we have to solve

x − 2y − 7 = 0   ...(1)

and 2x + y + 1 = 0  ...(2)

Multiplying equation (2) by 2, we get

4x + 2y + 2 = 0   ...(3)

Adding equations (1) and (3), we get

5x − 5 = 0

∴ x = 1

∴ from (2), 2(1) + y + 1 =0

∴ y = − 3

Hence, the point of intersection of the lines is (1, −3).

  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×