Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Show that Lim X → 2 − X [ X ] ≠ Lim X → 2 + X [ X ] . - Mathematics

Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]

Advertisement Remove all ads

Solution

\[\lim_{x \to 2^-} \frac{x}{\left[ x \right]}\]
\[\text{ Let } x = 2 - h, \text{ where h } \to 0 . \]
\[ \lim_{h \to 0} \frac{\left( 2 - h \right)}{\left[ 2 - h \right]}\]
\[ = \frac{2}{1}\]
\[ \lim_{x \to 2^+} \frac{x}{\left[ x \right]}\]
\[\text{ Let } x = 2 + \text{ h, where h } \to 0 . \]
\[ \lim_{h \to 0} \frac{\left( 2 + h \right)}{\left[ 2 + h \right]}\]
\[ = \frac{2}{2}\]
\[ = 1\]
\[ \therefore \lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]}\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.1 | Q 17 | Page 12
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×