Advertisement Remove all ads
Advertisement Remove all ads
Sum
Show that `ilog((x-i)/(x+i))=pi-2tan6-1x`
Advertisement Remove all ads
Solution
We have `log(x+i)=1/2log(x^2+1)+itan^(-1)(1/x)`
and `log(x-i)=1/2log(x^2+1)-itan^(-1)(1/x)`
`log((x-i)/(x+i))=log(x-i)-log(x+i)`
`=-2itan^(-1) 1/x=-2i(pi/2-tan^(-1)x)`
`therefore log((x-i)/(x+i))=-i(pi-2tan^(-1)x)`
`therefore ilog((x-i)/(x+i))=(pi-2tan^(-1)x)`
Concept: Logarithmic Functions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads