Show That: (I)` (1-sin 60^0)/(Cos 60^0)=(Tan60^0-1)/(Tan60^0+1)` - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

 Show that:

(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`

Advertisement Remove all ads

Solution

LHS=`(1-sin 60^0)/(cos 60^0) =(1-(sqrt(3))/2)/(1/2) = (((2-sqrt(3))/2))/(1/2) =((2-sqrt(3))/2) xx2=2-sqrt(3)`

RHS=`(tan60^0-1)/(tan60^0+1) = (sqrt(3)-1)/(sqrt(3)+1) = (sqrt(3)-1)/(sqrt(3)+1) xx(sqrt(3)-1)/(sqrt(3)+1)=((sqrt(3)-1)^2)/((sqrt(3))^2-1^2)=(3+1-2sqrt(3))/(3-1) =(4-2sqrt(3) )/2 = 2-sqrt(3)`

Hence, LHS = RHS

`∴ (1-sin 60^0)/(cos 60^0)=(tan 60^0-1)/(tan60^0+1)`

Concept: Trigonometric Ratios and Its Reciprocal
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 6 T-Ratios of some particular angles
Exercises | Q 10.1
Share
Notifications

View all notifications


      Forgot password?
View in app×