# Show that the differential equation 2xy dy/dx=x^2+3y^2 is homogeneous and solve it. - Mathematics

Show that the differential  equation 2xydy/dx=x^2+3y^2  is homogeneous and solve it.

#### Solution

The given differential equation can be expressed as

dy/dx=(x^2+3y^2)/(2xy)      .....(i)

Let F(x, y)=(x^2+3y^2)/(2xy)

Now,

F(λx, λy)=((λx)^2+3(λy)^2)/(2(λx)(λy))=(λ^2(x^2+3y^2))/(λ^2(2xy))=λ^0F(x, y)

Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.

Let y = vx           .....(ii)

Differentiating (ii) w.r.t. x, we get

dy/dx=v+x(dv)/dx

Substituting the value of y and dy/dx in (i), we get

v+x(dv)/dx=(1+3v^2)/(2v)

⇒x(dv)/dx=(1+3v^2)/(2v)−v

 ⇒x(dv)/dx=(1+3v^2−2v^2)/(2v)

⇒x(dv)/dx=(1+v^2)/(2v)

⇒(2v)/(1+v^2)dv=dx/x             .....(ii)

Integrating both side of (iii), we get

∫(2v)/(1+v^2)dv=∫dx/x

Putting 1+v^2=t

2vdv=dt

∴∫dt/t=∫dx/x

log|t|=log|x| +log|C1|

logt/x=log|C1|

⇒t/x=±C_1

⇒(1+v^2)/x=±C_1

⇒(1+y^2/x^2)/x=±C_1

x2+y2=Cx3

Concept: Methods of Solving First Order, First Degree Differential Equations - Homogeneous Differential Equations
Is there an error in this question or solution?