###### Advertisements

###### Advertisements

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

###### Advertisements

#### Solution

We know that diagonals of parallelogram bisect each other.

Therefore, O is the mid-point of AC and BD.

BO is the median in ΔABC. Therefore, it will divide it into two triangles of equal areas.

∴ Area (ΔAOB) = Area (ΔBOC) ... (1)

In ΔBCD, CO is the median.

∴ Area (ΔBOC) = Area (ΔCOD) ... (2)

Similarly, Area (ΔCOD) = Area (ΔAOD) ... (3)

From equations (1), (2), and (3), we obtain

Area (ΔAOB) = Area (ΔBOC) = Area (ΔCOD) = Area (ΔAOD)

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.

#### APPEARS IN

#### RELATED QUESTIONS

Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Prove that ar (AOD) = ar (BOC).

In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

(i) ar (ACB) = ar (ACF)

(ii) ar (AEDF) = ar (ABCDE)

P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that

(i) ar(PRQ) = 1/2 ar(ARC)

(ii) ar(RQC) = 3/8 ar(ABC)

(iii) ar(PBQ) = ar(ARC)

In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:-

(i) ΔMBC ≅ ΔABD

(ii) ar (BYXD) = 2 ar(MBC)

(iii) ar (BYXD) = ar(ABMN)

(iv) ΔFCB ≅ ΔACE

(v) ar(CYXE) = 2 ar(FCB)

(vi) ar (CYXE) = ar(ACFG)

(vii) ar (BCED) = ar(ABMN) + ar(ACFG)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

In a ΔABC, P and Q are respectively the mid-points of AB and BC and R is the mid-point

of AP. Prove that :

(1) ar (Δ PBQ) = ar (Δ ARC)

(2) ar (Δ PRQ) =`1/2`ar (Δ ARC)

(3) ar (Δ RQC) =`3/8` ar (Δ ABC) .

In Fig. below, ABC and BDE are two equilateral triangles such that D is the mid-point of

BC. AE intersects BC in F. Prove that

(1) ar (Δ BDE) = `1/2` ar (ΔABC)

(2) Area ( ΔBDE) `= 1/2 ` ar (ΔBAE)

(3) ar (BEF) = ar (ΔAFD)

(4) area (Δ ABC) = 2 area (ΔBEC)

(5) ar (ΔFED) `= 1/8` ar (ΔAFC)

(6) ar (Δ BFE) = 2 ar (ΔEFD)

If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.

PQRS is a parallelogram whose area is 180 cm^{2} and A is any point on the diagonal QS. The area of ∆ ASR = 90 cm^{2}.

ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Then ar (BDE) = `1/4` ar (ABC).

In figure, CD || AE and CY || BA. Prove that ar (CBX) = ar (AXY).