Advertisement Remove all ads

Show that All Roots of ( X + 1 ) 6 + ( X − 1 ) 6 = 0 Are Given by -icot ( 2 K + 1 ) N 12 Where K=0,1,2,3,4,5. - Applied Mathematics 1

Show that all roots of `(x+1)^6+(x-1)^6=0` are given by -icot`((2k+1)n)/12`where k=0,1,2,3,4,5.

Advertisement Remove all ads

Solution

`(x+1)^6+(x-1)^6=0` 

∴ `(x+1)^6=(-x-1)^6` 

∴ `(x+1)^6/(x-1)^6=-1`

∴ `((x+1)/(x-1))^6=e^(ipi)`         `{∵ e^(ipi)=cospi+isinpi=-1+i(0)=-1}`      (Principal value) 

∴` ((x+1)/(x-1)^6=e^(i(pi+2kpi))`         , k=0,1,2,3,4,5 

∴ `(x+1)/(x-1)=e(ipi(1+2k)/6)`

Let `2θ= (pi(1+2k))/6`

∴ From (1) & (2),` (x+1)/(x-1)=e^(i2θ)`

∴ By Componendo – Dividendo,`( (x+1)+(x-1))/((x+1)-(x-1))=(e^12θ+1)/(e^12θ-1)` 

∴ `2x/2= (e^(iθ)[e^(iθ)+e^(-iθ)])/(e^(iθ)[e^(iθ)-e^(-iθ)])` 

∴ `x=(2cosθ)/(2isinθ)`      {∵`sinθ=(e^(iθ)-e^(-iθ))/(2i) and cos θ= (e^(iθ)+e^(-iθ))/(2) }`

∴` x=1/i cotθ ` 

∴ `x=-icot  ((2k+1)n)/12`(From 2) where k = 0, 1, 2, 3, 4, 5

 

 

 

 

 

`}

 

Concept: Powers and Roots of Trigonometric Functions
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×