Sum
Show that AB = BA where,
A = `[(-2, 3, -1),(-1, 2, 1),(-6, 9, -4)], "B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`
Advertisement Remove all ads
Solution
AB = `[(-2, 3, -1),(-1, 2, 1),(-6, 9, -4)] [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`
= `[(-2 + 6 - 3, -6 + 6 - 0, 2 - 3 + 1),(-1 + 4 - 3, -3 + 4 - 0, 1 - 2 + 1),(-6 + 18 - 12, -18 + 18 - 0, 6 - 9 + 4)]`
= `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` ...(1)
BA = `[(1, 3, -1),(2, 2, -1),(3, 0, -1)] [(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)]`
= `[(-2 - 3 + 6, 3 + 6 - 9, -1 - 3 + 4),(-4 - 2 + 6, 6 + 4 - 9, -2 - 2 + 4),(-6 + 0 + 6, 9 + 0 - 9, -3 - 0 + 4)]`
= `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` ...(2)
From (1) and (2), we get,
AB = BA.
Concept: Matrices - Properties of Matrix Multiplication
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads