Sum
Show that:\[\sqrt[3]{- 125 - 1000} = \sqrt[3]{- 125} \times \sqrt[3]{- 1000}\]
Advertisement Remove all ads
Solution
LHS = \[\sqrt[3]{- 125 \times - 1000} = \sqrt[3]{- 5 \times - 5 \times - 5 \times - 10 \times - 10 \times - 10} = \sqrt[3]{\left\{ - 5 \times - 5 \times - 5 \right\} \times \left\{ - 10 \times - 10 \times - 10 \right\}} = - 5 \times - 10 = 50\]
RHS = \[\sqrt[3]{- 125} \times \sqrt[3]{- 1000} = \sqrt[3]{- 5 \times - 5 \times - 5} \times \sqrt[3]{\left\{ - 10 \times - 10 \times - 10 \right\}} = - 5 \times - 10 = 50\]
Because LHS is equal to RHS, the equation is true.
Concept: Concept of Cube Root
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads