Sum
Show that `int_0^1(x^a-1)/logx dx=log(a+1)`
Advertisement Remove all ads
Solution
let I = `int_0^1(x^a-1)/logx dx`
Taking ‘a’ as parameter ,
I(a) = `int_0^1(x^a-1)/logx dx` -------- (1)
differentiate w.r.t a ,
`(dI(a))/(da)=d/(da)int_0^1(x^a-1)/logx dx`
`therefore (dI(a))/(da)=int_0^1del/(dela)(x^a-1)/logx dx` ………{ D.U.I.S f(x)}
`therefore (dI(a))/(da)=int_0^1(x^a.logx)/logx dx` .......... `{(dx^a/da)=x^a.loga}`
`therefore (dI(a))/(da)=int_0^1x^a dx`
`therefore (dI(a))/(da)=[x^(a+1)/(a+1)]_0^1`
`therefore (dI(a))/(da)=1/(a+1)-0`
`therefore (dI(a))/(da)=1/(a+1)`
now , integrate w.r.t a,
`"I(a)"=int 1/(a+1)da`
`"I(a)"=log (a+1)+c` -------- (2)
where c is constant of integration
put a = 0 in eqn (1),
`"I"(0)=int_0^1 0 dx=0`
And
From eqn (2), I(0)= c
∴ c = 0
∴ I = log(a+1)
Hence proved.
Concept: Method of Variation of Parameters
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads