Advertisement Remove all ads

Separate into Real and Imaginary Parts of Cos − 1 ( 3 I 4 ) - Applied Mathematics 1

Advertisement Remove all ads
Advertisement Remove all ads

Separate into real and imaginary parts of cos`"^-1((3i)/4)` 

 

Advertisement Remove all ads

Solution

Let a+ib= cos`"^-1((3i)/4)`         .................(1) 

∴` cos(a+ib)=(3i)/4`

∴` cos (a) cos(ib)-sin (a) sin(ib)=(3i)/4` 

cos(a)cosh(b) – isin(a)sinh(b) =`0+(3i)/4`  `{∵ cos (ix)=cosh(ix)=sinh(x)}`

Comparing Real and Imaginary terms on both sides, 

`cos(a)cosh(b)=0`           ...............(2) `   &   -sin(a)sinj(b)=3/4`......(3) 

From (2), cos(a)=0 or cosh(b)=0, 

∴` a=pi/2`                  ....................(4)

`"From" (3) & (4), -sin(pi/2)sin(b)=3/4` 

∴ `1.sinh(b)=(-3)/4` 

∴ b= sinh`"^1((-3)/4)`  

= `log[((-3)/4)+sqrt(((-3)/4)^2+1)]`  `{∵ sinh"^-1z=log (z+sqrt(z^2+1))}`

= `Log [((-3)/4)+sqrt(9/16+1)]` 

= `log[((-3)/4)+5/4]`

=`log  1/2` 

=` log2^-1` 

∴ `b=-log2`                            ........(5) 

Substituting (4) & (5) in (1), `cos^-1((3i)/4)=pi/2-i log2`

Comparing Real and Imaginary terms on both sides, 

Real part`=a= pi/2` 

Imaginary part`=b=-log2`

Concept: Separation of Real and Imaginary Parts of Logarithmic Functions
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×