CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Prove that the Diagonals of a Rhombus Are Perpendicular Bisectors of Each Other. - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Prove that the diagonals of a rhombus are perpendicular bisectors of each other. 

Solution

 

Let OABC be a rhombus, whose diagonals OB and AC intersect at D. Suppose O is the origin.

Let the position vector of A and C be  \[\vec{a}\] and \[\vec{c}\] respectively. 

Then, \[\vec{OA} = \vec{a}\] In ∆OAB, \[\vec{OB} = \vec{OA} + \vec{AB} = \vec{OA} + \vec{OC} = \vec{a} + \vec{c}\] 

\[\left( \vec{AB} = \vec{OC} \right)\]

Position vector of mid-point of \[\vec{OB} = \frac{1}{2}\left( \vec{a} + \vec{c} \right)\]  

Position vector of mid-point of\[\vec{OB} = \frac{1}{2}\left( \vec{a} + \vec{c} \right)\]          (Mid-point formula) 

So, the mid-points of OB and AC coincide. Thus, the diagonals OB and AC bisect each other. 

Now, 

\[\vec{OB} . \vec{AC} = \left( \vec{a} + \vec{c} \right) . \left( \vec{c} - \vec{a} \right)\]
\[ = \left( \vec{c} + \vec{a} \right) . \left( \vec{c} - \vec{a} \right)\]
\[ = \left| \vec{c} \right|^2 - \left| \vec{a} \right|^2 \]
\[ = \left| \vec{OC} \right|^2 - \left| \vec{OA} \right|^2 \]
\[ = 0 \left( \left| \vec{OC} \right| = \left| \vec{OA} \right| \right)\]
\[ \Rightarrow \vec{OB} \perp \vec{AC}\] 

Hence, the diagonals OB and AC are perpendicular to each other.

Thus, the diagonals of a rhombus are perpendicular bisectors of each other. 

 

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [2]

Solution Prove that the Diagonals of a Rhombus Are Perpendicular Bisectors of Each Other. Concept: Section formula.
S
View in app×