CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Give a Condition that Three Vectors → a , → B and → C Form the Three Sides of a Triangle. What Are the Other Possibilities? - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Give a condition that three vectors \[\vec{a}\], \[\vec{b}\] and \[\vec{c}\]  form the three sides of a triangle. What are the other possibilities?

Solution

Let \[\text { ABC }\] be a triangle such that \[\overrightarrow {BC} = \vec{a}\] \[\overrightarrow{AB} = \vec{c}\] and \[\overrightarrow{CA} = \vec{b}\]. Then,    \[\vec{a} + \vec{b} + \vec{c} = \overrightarrow{BC} + \overrightarrow{CA} +\overrightarrow{AB}\] 

\[\vec{a} + \vec{b} + \vec{c} = \overrightarrow{BA} +  \overrightarrow{AB}\]                     

 [∵ \[\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA}\]] 
\[\Rightarrow \vec{a} + \vec{b} + \vec{c} = \overrightarrow{BB}\]                               [ Using triangle law]
\[\Rightarrow \vec{a} + \vec{b} + \vec{c}\to = \vec{0}\]                                  [ By definition of null vector]
Other possibilities are
\[\left( i \right) \vec{c} + \vec{a} = \vec{b}\]
\[\left( ii \right) \vec{a} + \vec{b} = \vec{c}\]
\[\left( iii \right) \vec{b} + \vec{c} = \vec{a}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Give a Condition that Three Vectors → a , → B and → C Form the Three Sides of a Triangle. What Are the Other Possibilities? Concept: Scalar Triple Product of Vectors.
S
View in app×