S I N θ Cos ( 90 ° − θ ) C O S θ Sin ( 90 ° − θ ) + C O S θ Sin ( 90 ° − θ ) S I N θ Cos ( 90 ° − θ ) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]

Advertisement Remove all ads

Solution

\[\ LHS = \frac{\sec\left( 90° - \theta \right) cosec\theta - \tan\left( 90° - \theta \right) \cot\theta + \cos^2 25° + \cos^2 65°}{3\tan27° \tan63°}\]

\[ = \frac{cosec\theta cosec\theta - \cot\theta \cot\theta + \sin^2 \left( 90° - 25° \right) + \cos^2 65°}{3\tan27° \cot\left( 90° - 63° \right)}\]

\[ = \frac{{cosec}^2 \theta - \cot^2 \theta + \sin^2 65° + \cos^2 65°}{3\tan27°\cot27°}\]

\[ = \frac{1 + 1}{3 \times \tan27° \times \frac{1}{\tan27°}}\]

\[ = \frac{2}{3}\]

= RHS

Concept: Trigonometry
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.6 | Page 313

Video TutorialsVIEW ALL [2]

Share
Notifications

View all notifications


      Forgot password?
View in app×