###### Advertisements

###### Advertisements

Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason

###### Advertisements

#### Solution

Take the sides of a right angled triangle ∆ABC as

a = 7 inches

b = 25 inches

c = ?

By Pythagoras theorem,

b^{2} = a^{2} + c^{2}

25^{2} = 7^{2} + c^{2}

⇒ c^{2} = 25^{2} – 7^{2}

= 625 – 49 = 576

∴ c^{2} = 24^{2}

⇒ c = 24 inches

∴ Width of TV cabinet is 20 inches which is lesser than the width of the screen ie. 24 inches.

∴ The TV will not fit into the cabinet.

#### APPEARS IN

#### RELATED QUESTIONS

If the sides of a triangle are 6 cm, 8 cm and 10 cm, respectively, then determine whether the triangle is a right angle triangle or not.

P and Q are the mid-points of the sides CA and CB respectively of a ∆ABC, right angled at C. Prove that:

`(i) 4AQ^2 = 4AC^2 + BC^2`

`(ii) 4BP^2 = 4BC^2 + AC^2`

`(iii) (4AQ^2 + BP^2 ) = 5AB^2`

Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 50 cm, 80 cm, 100 cm

A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Tick the correct answer and justify: In ΔABC, AB = `6sqrt3` cm, AC = 12 cm and BC = 6 cm.

The angle B is:

PQR is a triangle right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.

ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.

Which of the following can be the sides of a right triangle?

2.5 cm, 6.5 cm, 6 cm

In the case of right-angled triangles, identify the right angles.

Which of the following can be the sides of a right triangle?

1.5 cm, 2 cm, 2.5 cm

In the case of right-angled triangles, identify the right angles.

Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides

Prove that the points A(0, −1), B(−2, 3), C(6, 7) and D(8, 3) are the vertices of a rectangle ABCD?

**Identify, with reason, if the following is a Pythagorean triplet.**

(3, 5, 4)

**Identify, with reason, if the following is a Pythagorean triplet.**(24, 70, 74)

**Identify, with reason, if the following is a Pythagorean triplet.**

(11, 60, 61)

For finding AB and BC with the help of information given in the figure, complete following activity.

AB = BC ..........

\[\therefore \angle BAC = \]

\[ \therefore AB = BC =\] \[\times AC\]

\[ =\] \[\times \sqrt{8}\]

\[ =\] \[\times 2\sqrt{2}\]

=

Find the length diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.

In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ^{2 }= 4PM^{2 }– 3PR^{2}.

^{}

Some question and their alternative answer are given. Select the correct alternative.

If a, b, and c are sides of a triangle and a^{2 }+ b^{2 }= c^{2}, name the type of triangle.

In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:

4(BL^{2 }+ CM^{2}) = 5 BC^{2}

^{}

Digonals of parallelogram WXYZ intersect at point O. If OY =5, find WY.

In ΔMNP, ∠MNP = 90˚, seg NQ ⊥ seg MP, MQ = 9, QP = 4, find NQ.

**In the figure: ∠PSQ = 90 ^{o}, PQ = 10 cm, QS = 6 cm and RQ = 9 cm. Calculate the length of PR.**

**In triangle ABC, given below, AB = 8 cm, BC = 6 cm and AC = 3 cm. Calculate the length of OC.**

**In the figure, given below, AD ⊥ BC. **Prove that: c

^{2}= a

^{2}+ b

^{2}- 2ax.

**In triangle ABC, angle A = 90 ^{o}, CA = AB and D is the point on AB produced.**

Prove that DC

^{2}- BD

^{2}= 2AB.AD.

**In figure AB = BC and AD is perpendicular to CD.**

Prove that: AC^{2} = 2BC. DC.

**ABC is a triangle, right-angled at B. M is a point on BC.**

Prove that: AM^{2} + BC^{2} = AC^{2} + BM^{2}.

**In the following figure, OP, OQ, and OR are drawn perpendiculars to the sides BC, CA and AB respectively of triangle ABC.**

Prove that: AR^{2} + BP^{2} + CQ^{2} = AQ^{2} + CP^{2} + BR^{2}

**O is any point inside a rectangle ABCD.**

Prove that: OB^{2} + OD^{2} = OC^{2} + OA^{2}.

In the following Figure ∠ACB= 90° and CD ⊥ AB, prove that CD^{2} = BD × AD

Find the side of the square whose diagonal is `16sqrt(2)` cm.

Find the value of (sin^{2} 33 + sin^{2} 57°)

Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.

**The sides of a certain triangle is given below. Find, which of them is right-triangle**

16 cm, 20 cm, and 12 cm

In the given figure, angle BAC = 90°, AC = 400 m, and AB = 300 m. Find the length of BC.

In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm

In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm

Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm

In the given figure, angle ACB = 90° = angle ACD. If AB = 10 m, BC = 6 cm and AD = 17 cm, find :

(i) AC

(ii) CD

In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.

In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle ABC = 90°. Find the length of DC.

Use the information given in the figure to find the length AD.

In the figure below, find the value of 'x'.

In the right-angled ∆LMN, ∠M = 90°. If l(LM) = 12 cm and l(LN) = 20 cm, find the length of seg MN.

The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?

Find the Pythagorean triplets from among the following set of numbers.

3, 4, 5

Find the Pythagorean triplet from among the following set of numbers.

2, 4, 5

Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6

Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41

The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 12, 15

The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7

The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30

Find the length of the hypotenuse of a triangle whose other two sides are 24cm and 7cm.

A man goes 10 m due east and then 24 m due north. Find the distance from the straight point.

A ladder 25m long reaches a window of a building 20m above the ground. Determine the distance of the foot of the ladder from the building.

A right triangle has hypotenuse p cm and one side q cm. If p - q = 1, find the length of third side of the triangle.

The foot of a ladder is 6m away from a wall and its top reaches a window 8m above the ground. If the ladder is shifted in such a way that its foot is 8m away from the wall to what height does its tip reach?

Two poles of height 9m and 14m stand on a plane ground. If the distance between their 12m, find the distance between their tops.

Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB^{2} = AD^{2} - BC x CE + `(1)/(4)"BC"^2`

A point OI in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Prove that OB^{2} + OD^{2 }= OC^{2} + OA^{2}

In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.

Prove that: 9BP^{2} = 9BC^{2} + 4AC^{2}

In a right-angled triangle PQR, right-angled at Q, S and T are points on PQ and QR respectively such as PT = SR = 13 cm, QT = 5 cm and PS = TR. Find the length of PQ and PS.

Determine whether the triangle whose lengths of sides are 3 cm, 4 cm, 5 cm is a right-angled triangle.

∆ABC is right-angled at C. If AC = 5 cm and BC = 12 cm. find the length of AB.

A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?

To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?

The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ^{2} = 2PR^{2} + QR^{2}

Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?

If ‘l‘ and ‘m’ are the legs and ‘n’ is the hypotenuse of a right angled triangle then, l^{2} = ________

In a right angled triangle, the hypotenuse is the greatest side

Find the unknown side in the following triangles

Find the unknown side in the following triangles

Find the unknown side in the following triangles

An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height

Find the distance between the helicopter and the ship

In triangle ABC, line I, is a perpendicular bisector of BC.

If BC = 12 cm, SM = 8 cm, find CS

The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________

In the figure, find AR

From the given figure, in ∆ABQ, if AQ = 8 cm, then AB =?

In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base?

In ΔABC, if DE || BC, AD = x, DB = x – 2, AE = x + 2 and EC = x – 1, then value of x is ______.

Sides AB and BE of a right triangle, right-angled at B are of lengths 16 cm and 8 cm respectively. The length of the side of largest square FDGB that can be inscribed in the triangle ABE is ______.

Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.

In an equilateral triangle PQR, prove that PS^{2} = 3(QS)^{2}.

Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is ______.

In a triangle, sum of squares of two sides is equal to the square of the third side.

Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?

Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.