CBSE Class 10CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solve for X: 1 X − 3 − 1 X + 5 = 1 6 , X ≠ 3 , − 5 - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]

Solution

\[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}\]

\[ \Rightarrow \frac{x + 5 - x + 3}{\left( x - 3 \right)\left( x + 5 \right)} = \frac{1}{6}\]

\[ \Rightarrow \frac{8}{\left( x - 3 \right)\left( x + 5 \right)} = \frac{1}{6}\]

\[\Rightarrow 48 = x^2 + 2x - 15\]

\[ \Rightarrow x^2 + 2x - 15 - 48 = 0\]

\[ \Rightarrow x^2 + 2x - 63 = 0\]

\[ \Rightarrow x^2 + 9x - 7x - 63 = 0\]

\[\Rightarrow x\left( x + 9 \right) - 7\left( x + 9 \right) = 0\]

\[ \Rightarrow \left( x - 7 \right)\left( x + 9 \right) = 0\]

\[ \Rightarrow x = 7, - 9\]

  Is there an error in this question or solution?

APPEARS IN

Solution Solve for X: 1 X − 3 − 1 X + 5 = 1 6 , X ≠ 3 , − 5 Concept: Relationship Between Discriminant and Nature of Roots.
S
View in app×