Advertisement Remove all ads

# Reduce the Following Equation to the Normal Form and Find P and α in X + √ 3 Y − 4 = 0 . - Mathematics

Answer in Brief

Reduce the following equation to the normal form and find p and α in $x + \sqrt{3}y - 4 = 0$ .

Advertisement Remove all ads

#### Solution

$x + \sqrt{3}y - 4 = 0$

$\Rightarrow x + \sqrt{3}y = 4$

$\Rightarrow \frac{x}{\sqrt{1^2 + \left( \sqrt{3} \right)^2}} + \frac{\sqrt{3}y}{\sqrt{1^2 + \left( \sqrt{3} \right)^2}} = \frac{4}{\sqrt{1^2 + \left( \sqrt{3} \right)^2}} \left[ \text { Dividing both sides by } \sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y } \right)^2} \right]$

$\Rightarrow \frac{x}{2} + \frac{\sqrt{3}y}{2} = 2$

This is the normal form of the given line, where p = 2,

$cos\alpha = \frac{1}{2}$ and  $sin\alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha = \frac{\pi}{3}$.

Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.9 | Q 2.1 | Page 72
Advertisement Remove all ads

#### Video TutorialsVIEW ALL 

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?