ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, YZYQ=65. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.

Advertisements

Solution

 

कच्ची आकृती 

विश्लेषण:

आकृतीत दाखवल्याप्रमाणे,

समजा, Y - Q - Z व Y – P – X.

ΔXYZ ∼ ΔPYQ  ....[पक्ष]

∴ ∠XYZ ≅ ∠PYQ ....[समरूप त्रिकोणांचे संगत कोन]

`"XY"/"PY" = "YZ"/"YQ" = "XZ"/"PQ"` .....(i) [समरूप त्रिकोणांच्या संगत बाजू]

परंतू, `"YZ"/"YQ" = 6/5`  ....(ii) [पक्ष]

∴ `"XY"/"PY" = "YZ"/"YQ" = "XZ"/"PQ" = 6/5` ......[(i) व (ii) वरून]

∴ ΔXYZ च्या बाजू ΔPYQ च्या संगत बाजूंपेक्षा मोठ्या आहेत.

∴ जर रेख YQ चे 5 समान भाग केले, तर रेख YZ ही त्यातील एका भागाच्या 6 पट एवढ्या लांबीची असेल. म्हणूनच, जर ΔPYQ काढला, तर बिंदू Z हा बाजू YQ वर Y पासून 6 भाग अंतरावर असेल. आता, बिंदू Z मधून PQ ला समांतर काढलेली रेषा व किरण YP यांचा छेदनबिंदू X हा आहे. ΔXYZ हा ΔPYQ शी समरूप असलेला इष्ट त्रिकोण आहे.

रचनेच्या पायऱ्या:

i. दिलेल्या मापाचा ΔPYQ काढा. बाजू YQ शी लघुकोन करणारा किरण YT काढा.

ii. कंपासमध्ये सोयीस्कर अंतर घेऊन किरण YT वर Y1, Y2, Y3, Y4, Y5 आणि Y6 हे 6 बिंदू असे घ्या, की YY1 = Y1Y2 = Y2Y3 = Y3Y4 = Y4Y5 = Y5Y6.

iii. Y5Q जोडा. Y6 मधून Y5Q ला समांतर रेषा काढा. ही रेषा किरण YQ ला बिंदू Z मध्ये छेदते.  

iv. बिंदू Z मधून बाजू PQ ला समांतर रेषा काढा. ही रेषा व किरण YP यांच्या छेदनबिंदूला X नाव द्या.

ΔXYZ हा ΔPYQ चा इष्ट समरूप त्रिकोण आहे. 

 

Concept: समरूप त्रिकोणाची रचना
  Is there an error in this question or solution?
Chapter 4: भौमितिक रचना - संकीर्ण प्रश्नसंग्रह 4 [Page 99]

APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board [गणित २ भूमिती इयत्ता १० वी]
Chapter 4 भौमितिक रचना
संकीर्ण प्रश्नसंग्रह 4 | Q 8. | Page 99

RELATED QUESTIONS

ΔPQR ~ ΔLTR, ΔPQR मध्ये PQ = 4.2 सेमी, QR = 5.4 सेमी, PR = 4.8 सेमी आणि `"PQ"/"LT"` = `3/4` तर ΔPQR व ΔLTR काढा.


पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.

व्यासाच्या अंत्यबिंदूतून वर्तुळाला काढलेल्या स्पर्शिका परस्परांना ______ असतात. 


पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.

आकृतीमध्ये ΔABC ∼ ΔADE आहे, तर त्यांच्या संगत बाजूचे गुणोत्तर ______ आहे. 


पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.

ΔABC ∼ ΔAQR `"AB"/"AQ" = 7/5` असल्यास, खालीलपैकी कोणता पर्याय सत्य आहे?


ΔABC हा 60° काढा व तो दुभागा. 


ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा. 


ΔABC ∼ ΔPBQ, ΔABC मध्ये, AB = 4 सेमी, BC = 5 सेमी, AC = 6 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 2:3 असल्यास ΔPBQ काढा.


5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा.


ΔRHP ∼ ΔNED, ΔNED मध्ये, NE = 7 सेमी, ∠D = 30°, ∠N = 20° तसेच `"HP"/"ED" = 4/5,` तर ΔRHP काढा.


ΔABC मध्ये, BC = 6 सेमी, ∠B = 45°, ∠A = 100°. ΔABC ∼ ΔPBQ. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔABC व ΔPBQ काढा. 


Share
Notifications



      Forgot password?
Use app×