Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove the following:
tan8θ − tan5θ − tan3θ = tan8θ tan5θ tan3θ
Advertisement Remove all ads
Solution
∵ 8θ = 5θ + 3θ
∴ tan8θ = tan(5θ + 3θ)
∴ tan8θ = `(tan5theta + tan3theta)/(1 - tan5theta . tan3theta)`
∴ tan8θ (1 − tan5θ . tan3θ) = tan5θ + tan3θ
∴ tan 80 – tan 8θ · tan 5θ · tan 3θ = tan 5θ + tan 3θ
∴ tan 8θ – tan 5θ – tan 3θ = tan 8θ · tan 5θ · tan 30
Concept: Trigonometric Functions of Multiple Angles
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads