Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Solution
cosec 48° = cosec (90° – 42°) = sec 42°
= `1/cos42^circ` ...(1)
cosec 192° = cosec (270° – 78°) = – sec 78°
= `-1/cos78^circ` ...(2)
cosec 384 ° = cosec (360° + 24°) = cosec 24° ...(3)
∴ cosec 48° + cosec 192°
= `1/(cos42^circ) - 1/cos78^circ` ...[By (1) and (2)]
= `(cos78^circ - cos42^circ)/(cos78^circ* cos42^circ)`
= `(-2 sin ((78^circ + 42^circ)/2)*sin((78^circ - 42^circ)/2))/(cos(60^circ + 18^circ)*cos(60^circ - 18^circ)`
= `(-2 sin 60^circ* sin18^circ)/(cos^2 60^circ - sin^2 18^circ)` ...[∵ cos(A + B) · cos(A – B) = cos2A – sin2B]
= `(-2 xx sqrt(3)/2 xx (sqrt(5) - 1)/4)/((1/2)^2 - ((sqrt(5) - 1)/4)^2) ...[because sin18^circ = (sqrt(5) - 1)/4]`
= `(-sqrt(3)/4 (sqrt(5) - 1))/(1/4 - ((5 + 1 - 2sqrt(5))/16)`
= `(-sqrt(3)(sqrt(5) - 1))/4 xx 16/(4 - 6 + 2sqrt(5)`
= `(-sqrt(3)(sqrt(5) - 1))/4 xx 16/(2(sqrt(5) - 1))`
∴ cosec 48° + cosec 192° = `-2sqrt(3)` ...(4)
Also, cosec 96° + cosec 384°
= cosec 96° + cosec 24° ...[By (3)]
= `1/(sin96^circ) + 1/sin24^circ`
= `(sin24^circ + sin96^circ)/(sin96^circ* sin24^circ)`
= `(2sin((96^circ + 24^circ)/2)*cos((96^circ - 24^circ)/2))/(sin(60^circ + 36^circ)*sin(60^circ - 36^circ)`
= `(2 sin60^circ* cos36^circ)/(sin^2 60^circ - sin^2 36^circ)` ...[∵ sin(A + B) · sin(A – B) = sin2A – sin2B]
= `(2 xx sqrt(3)/2 xx (sqrt(5) + 1)/4)/((sqrt(3)/2)^2 - (sqrt(10 - 2sqrt(5))/4)^2) ...[because cos 36^circ = (sqrt(5) + 1)/4 and sin 36^circ = sqrt(10 - 2sqrt(5))/4]`
= `(sqrt(3)/4(sqrt(5) + 1))/(3/4 - ((10 - 2sqrt(5))/16)`
= `(sqrt(3)(sqrt(5) + 1))/4 xx 16/(12 - 10 + 2sqrt(5))`
= `(sqrt(3)(sqrt(5) + 1))/4 xx 16/(2(sqrt(5) + 1)`
∴ cosec 96° + cosec 384 ° = `2sqrt(3)` ...(5)
∴ L.H.S. = cosec 48° + cosec 96° + cosec 192° + cosec 384 °
= (cosec 48°+ cosec 192°) + (cosec 96° + cosec 384°)
= `-2sqrt(3) + 2sqrt(3)` .....[By (4) and (5)]
= 0
= R.H.S.
Alternative Method :
Consider,
cosec x + cot x = `1/sinx + cosx/sinx`
= `(1 + cosx)/sinx`
= `(2cos^2 x/2)/(2sin x/2 * cos x/2)`
∴ cosec x + cot x = `cot x/2`
∴ cosec x = `cot x/2 - cot x` ...(1)
Replacing x by 2x, 4x, 8x in (4), we get,
cosec 2x = cot x – cot 2x ...(2)
cosec 4x = cot 2x – cot 4x ...(3)
cosec 8x = cot 4x – cot 8x ...(4)
Adding (1), (2), (3) and (4), we get
cosec x + cosec 2x + cosec 4x + cosec 8x = `cot x/2 - cot8x` ...(5)
By substituting x = 48° in (5), we get,
cosec 48° + cosec 96° + cosec 192° + cosec 384°
= cot 24° – cot 384°
= cot 24° – cot (360° + 24°)
= cot 24° – cot 24° ...[∵ cot (2π + θ) = cot θ]
∴ cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0