Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
Advertisement Remove all ads
Solution
L.H.S. = `(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ)`
Dividing numerator and denominator by cos15°, we get
L.H.S. = `(1 - (sin15^circ)/(cos15^circ))/(1 + (sin15^circ)/(cos15^circ))`
= `(1 - tan15^circ)/(1 + tan15^circ)`
= `(tan45^circ - tan15^circ)/(1 + (tan45^circ)(tan15^circ))` ...[∵ tan 45° = 1]
= tan(45° – 15°)
= tan30°
= `1/sqrt(3)`
= R.H.S.
Concept: Trigonometric Functions of Sum and Difference of Angles
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads