Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove the following:
cos(x + y).cos(x − y) = cos2y − sin2x
Advertisement Remove all ads
Solution
L.H.S. = cos(x + y) · cos (x – y)
= (cosx cosy – sinx siny) · (cosx cosy + sinx siny)
= cos2x cos2y – sin2x sin2y .....[∵ (a − b) (a + b) = a2 − b2]
= (1 – sin2x) cos2y – sin2x (1 – cos2y) ......[∵ sin2θ + cos2θ = 1]
= cos2y – sin2x cos2y – sin2x + sin2x cos2y
= cos2y – sin2x
= R.H.S.
Concept: Trigonometric Functions of Multiple Angles
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads