Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove the following :
cos 20° cos 40° cos 60° cos 80° = `1/16`
Advertisement Remove all ads
Solution
L.H.S. = cos 20°. cos 40°. cos 60°. cos 80°
= `cos20^circ. cos40^circ. 1/2. cos80^circ`
= `1/(2 xx 2)(2cos 40^circ. cos20^circ). cos80^circ`
= `1/4[cos(40^circ + 20^circ) + cos(40^circ - 20^circ)]. cos80^circ`
= `1/4(cos60^circ + cos20^circ)cos80^circ`
= `1/4cos60^circ. cos80^circ + 1/4 cos20^circ. cos80^circ`
= `1/4(1/2)cos 80^circ + 1/(2 xx 4)(2cos80^circ cos20^circ)`
= `1/8cos80^circ + 1/8[cos(80^circ + 20^circ) + cos(80^circ - 20^circ)]`
= `1/8cos80^circ + 1/8(cos100^circ + cos60^circ)`
= `1/8cos80^circ + 1/8cos100^circ + 1/8cos60^circ`
= `1/8cos80^circ + 1/8cos(180^circ - 80^circ) + 1/8 xx 1/2`
= `1/8cos80^circ - 1/8cos80^circ + 1/16` ...[∵ cos(180° – θ) = – cos θ]
= `1/16`
= R.H.S.
Concept: Factorization Formulae - Formulae for Conversion of Product in to Sum Or Difference
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads