Advertisement Remove all ads

Prove that  |(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)| is divisible by (x + y + z) and hence find the quotient. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Prove that  `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.

Advertisement Remove all ads

Solution

Let `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`

Applying C1C1+C2+C3 , we get

`|(xy+yz+zx-x^2-y^2-z^2,zx-y^2,xy-z^2),(xy+yz+zx-x^2-y^2-z^2,xy-z^2,yz-x^2),(xy+yz+zx-x^2-y^2-z^2,yz-x^2,zx-y^2)|`

=(xy+yz+zxx2y2z2)`|(1,zx-y^2,xy-z^2),(1,xy-z^2,yz-x^2),(1,yz-x^2,zx-y^2)|`

Applying R2R2R1 and R3R3R1, we get

=(xy+yz+zxx2y2z2)`|(1,zx-y^2,xy-z^2),(0,(x+y+z)(y-z),(x+y+z)(z-x)),(0,(x+y+z)(y-x),(x+y+z)(z-y))|`

 =(x+y+z)2(xy+yz+zxx2y2z2)`|(1,zx-y^2,xy-z^2),(0,(y-z),(z-x)),(0,(y-x),(z-y))|`

=(x+y+z)2(xy+yz+zxx2y2z2)[{(yz)(zy)(zx)(yx)}0+0]

=(x+y+z)2(xy+yz+zxx2y2z2)

So, ∆ is divisible by (x + y + z).

The quotient when ∆ is divisible by (x + y + z) is (x+y+z)(xy+yz+zxx2y2z2)

Concept: Elementary Transformations
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×