Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Advertisement Remove all ads
Solution
\[\begin{array}{l} LHS =\tan( {55}^0 - \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\tan{ {90}^0 - ( {35}^0 + \theta)} - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\cot( {35}^0 + \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
= 0
= RHS
Concept: Trigonometric Ratios of Some Special Angles
Is there an error in this question or solution?