Advertisement Remove all ads

Prove that Sqrt((1 - Sin θ)/(1 + Sin θ)) = Sec θ - Tan θ - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.

Advertisement Remove all ads

Solution

L.H.S. = `sqrt(((1 - sin θ)(1 - sin θ))/((1 + sin θ)(1 - sin θ)))`

= `sqrt((1 + sin^2θ - 2sinθ)/(1 - sin^2θ)`

= `sqrt((1 + sin^2θ - 2sinθ)/(cos^2θ)`

= `sqrt( 1/cos^2θ + sin^2θ/cos^2θ - (2sin θ)/cos θ xx 1/cosθ`

= `sqrt( sec^2θ + tan^2 θ - 2 tan θ. sec θ)`

= `sqrt((sec θ - tan θ)^2)`

= sec θ - tan θ
= R.H.S.
Hence proved.

Concept: Trigonometric Identities
  Is there an error in this question or solution?

APPEARS IN

ICSE Class 10 Mathematics
Chapter 18 Trigonometry
Exercise | Q 6
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×