Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Prove That: Sin a + Sin B Sin a − Sin B = Tan ( a + B 2 ) Cot ( a − B 2 ) - Mathematics

Sum

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]
Advertisement Remove all ads

Solution

Consider LHS:
\[ \frac{\sin A + \sin B}{\sin A - \sin B}\]
\[ = \frac{2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)}{2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)} \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right), and \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos\left( \frac{A + B}{2} \right) \right\}\]
\[ = \frac{\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)}{\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}\]
\[ = \tan \left( \frac{A + B}{2} \right) cot \left( \frac{A - B}{2} \right)\]
 = RHS
Hence, LHS = RHS.

Concept: Transformation Formulae
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 8 Transformation formulae
Exercise 8.2 | Q 7.4 | Page 18
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×