Advertisement
Advertisement
Advertisement
Sum
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Advertisement
Solution 1
L.H.S = (sin θ + cosec θ)2 + (cos θ + sec θ)2
= (sin2θ + cosec2θ + 2 sin θ cosec θ + cos2θ + sec2θ + 2cos θ sec θ)
= (sin2θ + cos2θ) + (cosec2θ + sec2θ) + 2 sin θ `(1/("sin"theta)) + 2 cos theta (1/("cos" theta))`
= (1) + (1 + cot2θ + 1 + tan2θ) + (2) + (2)
= 7 + tan2θ + cot2θ
= R.H.S
Solution 2
L.H.S = (sin θ + cosec θ)2 + (cos θ + sec θ)2
= (sin2θ + cosec2θ + 2 sin θ cosec θ + cos2θ + sec2θ + 2cos θ sec θ)
= (sin2θ + cos2θ ) + 1 + cot2θ + 2 sin θ x `1/sin θ` + 1 + tan2 θ + 2cos θ. `1/cos θ`
= 1 + 1 + 1 + 2 + 2 + tan2 θ + cot2θ
= 7 + tan2 θ + cot2θ
= RHS
Hence proved.
Concept: Trigonometric Identities
Is there an error in this question or solution?