Prove that (sinθ−cosθ)/(sinθ+cosθ)+(sinθ+cosθ)/(sinθ−cosθ)=2/(2sin^2θ−1) - Mathematics

Advertisements
Advertisements
Sum

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`

Advertisements

Solution

`LHS=\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta}+\frac{\sin \theta +\cos \theta }{\sin \theta -\cos \theta }`

`=\frac{(\sin \theta -\cos \theta )^{2}+(\sin \theta +\cos \theta)^{2}}{(\sin \theta +\cos \theta )(\sin \theta -\cos \theta )}`

`=\frac{2(\sin ^{2}\theta +\cos ^{2}\theta )}{\sin ^{2}\theta-\cos ^{2}\theta `

`=\frac{2}{\sin ^{2}\theta -(1-\sin^{2}\theta )`

`=\frac{2}{(2\sin ^{2}\theta -1)}=RHS`

 

  Is there an error in this question or solution?

RELATED QUESTIONS

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


(secA + tanA) (1 − sinA) = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove.
`(1 + sin"A")/(1 - sin"A") = ("cosec"  "A" + 1)/("cosec"  "A" - 1`


Prove.
`(1+sinA)/cosA+cosA/(1+sinA)=2secA`


Prove.
`(1-sinA)/(1+sinA)=(secA-tanA)^2`


Prove the following identities:

sec4A (1 - sin4A) - 2 tan2A = 1


If 2 sin A – 1 = 0, show that: Sin 3A = 3 sin A – 4 sin3A


Prove that

`1/(sinA-cosA)-1/(sinA+cosA)=(2cosA)/(2sin^2A-1)`


` tan^2 theta - 1/( cos^2 theta )=-1`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Choose the correct alternative:

1 + tan2 θ = ?


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


Choose the correct alternative:

cos θ. sec θ = ?


If tan θ = `13/12`, then cot θ = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that cot2θ × sec2θ = cot2θ + 1


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Eliminate θ if x = r cosθ and y = r sinθ.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications



      Forgot password?
Use app×