Prove that Sin (70° + θ) − Cos (20° − θ) = 0 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that

sin (70° + θ) − cos (20° − θ) = 0

Advertisement Remove all ads

Solution

\[\begin{array}{l}(i) L.H.S=sin( {70}^0 + \theta) - \cos( {20}^0- \theta) \\ \end{array}\]

\[\begin{array}{l}=sin{ {90}^0 - ( {20}^0 - \theta)} - \cos( {20}^0 - \theta) \\ \end{array}\]

\[\begin{array}{l}=\cos( {20}^0 - \theta) -\cos( {20}^0 - \theta) \\ \end{array}\]

=0

= RHS

Concept: Trigonometric Ratios of Some Special Angles
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 7.1 | Page 314
Share
Notifications

View all notifications


      Forgot password?
View in app×