Advertisement Remove all ads

Prove that sin 5 θ = 1 16 [ sin 5 θ − 5 sin 3 θ + 10 sin θ ] - Applied Mathematics 1

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that `sin^5theta=1/16[sin5theta-5sin3theta+10sintheta]`

Advertisement Remove all ads

Solution

Let x = cos 𝜽+𝒊𝒔𝒊𝒏 𝜽  `1/x=costheta-isintheta`

`2costheta=x+1/x`    `sintheta=1/(2i)(x-1/x)`

For sinθ take fifth power on both sides,

`sin^5theta=[1/(2i)(x-1/x)]^5=1/(32i)[x^5-1/x^5-5(x^3-1/x^3)+10(x^1-1/x^1)]`

But `x^n=cosntheta+isinntheta` ,   `x^(-n)=cosntheta-isinntheta`

`x^n-x6(-n)=2isinntheta`

`therefore sin^5theta=1/(32i)[2isinn5theta-5xx2isin3theta+10xx2isintheta]`

`therefore sin^5theta=1/16[sin5theta-5sin3theta+10sintheta]`

Concept: Expansion of sinnθ, cosnθ in powers of sinθ, cosθ
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×