Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Advertisement Remove all ads
Solution
\[LHS = \left( \frac{\sin49°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\sin49°} \right)^2 \]
\[ = \left( \frac{\cos\left( 90° - 49° \right)}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos\left( 90° - 49° \right)} \right)^2 \]
\[ = \left( \frac{\cos41°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos41°} \right)^2 \]
= 12 + 12
= 1 + 1
= 2
= RHS
Concept: Trigonometric Ratios of Complementary Angles
Is there an error in this question or solution?