Prove That: ( Sin 49 ∘ Cos 41 ∘ ) 2 + ( Cos 41 ∘ Sin 49 ∘ ) 2 = 2 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]

Advertisement Remove all ads

Solution

\[LHS = \left( \frac{\sin49°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\sin49°} \right)^2 \]

\[ = \left( \frac{\cos\left( 90° - 49° \right)}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos\left( 90° - 49° \right)} \right)^2 \]

\[ = \left( \frac{\cos41°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos41°} \right)^2 \]

= 12 + 12

= 1 + 1

= 2

= RHS

Concept: Trigonometric Ratios of Complementary Angles
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.5 | Page 313
Share
Notifications

View all notifications


      Forgot password?
View in app×