Numerical
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Advertisement Remove all ads
Solution
\[\frac{2\pi}{5} = 72°, \frac{\pi}{3} = 60° \]
\[LHS = \sin^2 72° - \sin^2 6°\]
\[ = \sin^2 \left( 90° - 18° \right) - \frac{3}{4}\]
\[ = \cos^2 18 °- \frac{3}{4} \left( \because \sin\left( 90° - \theta \right) = cos\theta \right)\]
\[ = \left( \frac{\sqrt{10 + 2\sqrt{5}}}{4} \right)^2 - \frac{3}{4} \left( \because \cos18° = \frac{\sqrt{10 + 2\sqrt{5}}}{4} \right)\]
\[ = \frac{10 + 2\sqrt{5}}{16} - \frac{3}{4}\]
\[= \frac{10 + 2\sqrt{5} - 12}{16}\]
\[ = \frac{2\sqrt{5} - 2}{16}\]
\[ = \frac{\sqrt{5} - 1}{8}\]
\[ = RHS\]
\[\text{ Hence proved } .\]
Concept: Values of Trigonometric Functions at Multiples and Submultiples of an Angle
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads