Prove That: (Sin θ + 1 + Cos θ) (Sin θ − 1 + Cos θ) . Sec θ Cosec θ = 2 - Mathematics

Advertisements
Advertisements
Sum

Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2

Advertisements

Solution

LHS = (sinθ + 1 + cosθ)(sinθ − 1 + cosθ). secθcosecθ

= [sin2θ − sinθ + sinθcosθ + sinθ − 1 + cosθ + sinθcosθ − cosθ + cos2θ] `1/cosθ1/sinθ `                                                             ...(∵ secθ = `1/cosθ  and  cosecθ = 1/sinθ`)

= [1 + 2sinθcosθ − 1]`1/cosθ  1/sinθ`

= [2sinθcosθ]`1/cosθ1/sinθ`

= 2 = RHS             

Hence proved.

  Is there an error in this question or solution?
2018-2019 (March) Abroad Set(2)

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


If the angle θ = -60° , find the value of sinθ .


If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan A = cot B, prove that A + B = 90


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Evaluate `(sin 18^@)/(cos 72^@)`


Write all the other trigonometric ratios of ∠A in terms of sec A.


if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`


if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


For triangle ABC, show that:

`tan ("B + C")/2 = cot "A"/2`


Evaluate:

3cos80° cosec10° + 2 cos59° cosec31°

 


Find the value of x, if sin2x = 2sin 45° cos 45°


Find the value of x, if sin3x = 2sin 30° cos30°


Evaluate:

`(sin35^@cos55^@+cos35^@sin55^@)/(cosec^2 10^@-tan^2 80^@)`


Use tables to find cosine of 26° 32’


Prove that:

`1/(1+sin(90^@-A))+1/(1-sin(90^@-A))=2sec^2(90^@-A)`


If A and B are complementary angles, prove that:

cotB + cosB = secA cosB (1 + sinB)

 


Find A, if 0° ≤ A ≤ 90° and 2cos2A - 1 = 0


If 0° < A < 90°; Find A, if `sinA/(secA-1)+sinA/(secA+1)=2`


If the angle θ = –45° , find the value of tan θ.


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If tanθ = 2, find the values of other trigonometric ratios.


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


\[\frac{2 \tan 30°}{1 - \tan^2 30°}\]  is equal to


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


In the following figure  the value of cos ϕ is 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`


Express the following in term of angles between 0°and 45°:
sin 59°+ tan 63°


Express the following in term of angles between 0°and 45°:
cosec 68° + cot 72°


Express the following in term of angles between 0°and 45°:
cos 74°+ sec 67°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


Evaluate: 3 cos 80° cosec 10°+ 2 sin 59° sec 31°.


Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Find the value of the following:

sin 21° 21′


If tan θ = cot 37°, then the value of θ is


The value of tan 72° tan 18° is


The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


The value of tan 1° tan 2° tan 3°…. tan 89° is


If tan θ = 1, then sin θ . cos θ = ?


If cot( 90 – A ) = 1, then ∠A = ?


`(sin 75^circ)/(cos 15^circ)` = ?


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


Share
Notifications



      Forgot password?
Use app×