Advertisement Remove all ads

Prove That: (Sin θ + 1 + Cos θ) (Sin θ − 1 + Cos θ) . Sec θ Cosec θ = 2 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2

Advertisement Remove all ads

Solution

LHS = (sinθ + 1 + cosθ)(sinθ − 1 + cosθ). secθcosecθ

= [sin2θ − sinθ + sinθcosθ + sinθ − 1 + cosθ + sinθcosθ − cosθ + cos2θ] `1/cosθ1/sinθ `                                                             ...(∵ secθ = `1/cosθ  and  cosecθ = 1/sinθ`)

= [1 + 2sinθcosθ − 1]`1/cosθ  1/sinθ`

= [2sinθcosθ]`1/cosθ1/sinθ`

= 2 = RHS             

Hence proved.

Concept: Trigonometric Ratios of Complementary Angles
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×