Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Advertisement Remove all ads
Solution
secθ + tanθ = `1/cosθ + sintheta/cosθ`
`=(1+sintheta)/costheta`
`=((1+sintheta)(1-sintheta))/(costheta (1-sintheta))`
`=(1^2 - sin^2theta)/(costheta(1-sintheta))`
`=cos^2theta/(costheta(1-sintheta))`
`therefore sectheta +tantheta =costheta/(1-sintheta)`
Concept: Trigonometric Identities
Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads