Advertisement Remove all ads

Prove that the Points A(2, 4), B(2, 6) and (2 +`Sqrt(3)` ,5) Are the Vertices of an Equilateral Triangle - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Prove that the points A(2, 4), b(2, 6) and (2 +`sqrt(3)` ,5)  are the vertices of an equilateral triangle

Advertisement Remove all ads

Solution

The given points are A(2, 4), b(2, 6) and (2 +`sqrt(3)` ,5) Now 

`AB =sqrt(((2-2)^2 +(4-6)^2 )) = sqrt((0)^2 +(-2)^2)`

    `= sqrt((0+4) =2`

`BC = sqrt((2-2- sqrt(3))^2 + (6-5)^2 ) = sqrt((- sqrt(3))^2 +(1)^2)`

`= sqrt(3+1) = 2`

`AC = sqrt((2-2-sqrt(3))^2 + (4-5)^2 ) = sqrt((- sqrt(3))^2 +(-1)^2)`

`= sqrt(3+1) =2`

Hence, the points A(2, 4), b(2, 6) and (2 +`sqrt(3)` ,5) are the vertices of an equilateral triangle

Concept: Area of a Triangle
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 16 Coordinate Geomentry
Q 22
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×