Share
Notifications

View all notifications

Prove that the Matrix 1 √ 3 [ 1 1 + I 1 1 − I − 1 ] is Unitary. - Applied Mathematics 1

Login
Create free account


      Forgot password?

Question

Prove that the matrix `1/sqrt3`  `[[ 1,1+i1],[1-i,-1]]` is unitary. 

Solution

Let   A= `1/sqrt3[[ 1,1+i],[1-i,-1]]`

The matrix is unitary when A.𝑨𝜽 = 𝑰 . 

∴ `A^θ=(\bar{A})^t=1/sqrt3[[ 1,1+i],[1-i,-1]]^t =1/sqrt3[[ 1,1+i],[1-i,-1]]`

∴ `A.A^θ=1/sqrt3[[ 1,1+i],[1-i,-1]]1/sqrt3[[ 1,1+i],[1-i,-1]]`

= `1/3 [[3,0],[0,3]]`

=`[[1,0],[0,1]]`

∴` A.A^θ=I`

The given matrix is unitary is proved.

  Is there an error in this question or solution?

APPEARS IN

Solution Prove that the Matrix 1 √ 3 [ 1 1 + I 1 1 − I − 1 ] is Unitary. Concept: .Circular Functions of Complex Number.
S
View in app×