Advertisement Remove all ads

Prove that Log [ Tan ( π 4 + I X 2 ) ] = I . Tan − 1 ( Sinh X ) - Applied Mathematics 1

Prove that log `[tan(pi/4+(ix)/2)]=i.tan^-1(sinhx)`

Advertisement Remove all ads

Solution

L.H.S =` log[tan(pi/4+(ix)/2)]`

=`log [(1+tan(ix/2))/(1-tan(ix/2))]`

=`log [1+tan ((ix)/2)]- log [1-tan ((ix)/2)]`

= `log [(1+i.tanh) x/2]-log[(1-itanh )x/2]`

We have , 

`log (a+ib)=1/2log(a^2+b^2)+i tan^-1(b/a)` 

∴ = `1/2 log (1+tanh^2 x/2)+i tan^-1 (tanh  x/2)-[1/2 log (1+tanh^2   x/2)- i tan^-1(tanh  x/2)]`

=`2i[tan^-1 (tanh x/2)]` 

`L.H.S= 2 i.tan^-1 (tanh  x/2)`

`R.H.S = i.tan ^-1 (sinhx)`

We know that `sinh^-1 x=log(x+sqrt(1+x^2))`

`tanh^-1 x=1/2[log((x+1)/(1-x))]`

= `itan^-1 (tanh  x/2)`

Also `sinh^-1 (tanx)=tanh^-1 (x)`

`R.H.S= itan^-1(tanh  x/2)`

`log [tan(pi/4+(ix)/2)=i.tan^-1 (sinhx)]`

Concept: Logarithmic Functions
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×