Advertisement Remove all ads

Prove that cot^−1(√(1+sinx)+√(1−sinx)/√(1+sinx)−√(1−sinx))=x/2; x ∈ (0,π/4) - Mathematics

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `

Advertisement Remove all ads

Solution

`cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))`

`=cot^(-1)((sqrt(cos^2(x/2)+sin^2(x/2)+2 sin(x/2)cos(x/2))+sqrt(cos^2(x/2)+sin^2(x/2)-2 sin(x/2)cos(x/2)))/(sqrt(cos^2(x/2)+sin^2(x/2)+2 sin(x/2)cos(x/2))-sqrt(cos^2(x/2)+sin^2(x/2)-2 sin(x/2)cos(x/2))))  [∵sin 2x=2 sin x cos x and sin^2 x+cos^2 x=1]`

 

`=cot^(-1)(sqrt((cos(x/2)+sin(x/2))^2+sqrt((cos(x/2)-sin(x/2))^2))/(sqrt((cos(x/2)+sin(x/2))^2)-sqrt((cos(x/2)-sin(x/2))^2)))`

`=cot^(-1) {(|cos(x/2)+sin(x/2)|+|cos(x/2)-sin(x/2)|)/(|cos(x/2)+sin(x/2)|-|cos(x/2)-sin(x/2)|)}`

`=cot^(-1) {((cos(x/2)+sin(x/2))+(cos(x/2)-sin(x/2)))/((cos(x/2)+sin(x/2))-(cos(x/2)-sin(x/2)))}   [∵0<x<pi/4⇒cos(x/2)>sin (x/4)]`

`=cot^(-1)((2cos(x/2))/(2sin(x/2)))`

`=cot^(-1)(cotx/2)`

`=x/2`

`=RHS`

Hence proved

  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×