Prove that Cosec (67° + θ) − Sec (23° − θ) = 0 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that

cosec (67° + θ) − sec (23° − θ) = 0

Advertisement Remove all ads

Solution

\[\begin{array}{l} \text{L.H.S}=cosec( {67}^\circ + \theta) - \sec( {23}^\circ-  \theta) \\ \end{array}\]

\[\begin{array}{l}=cosec{ {90}^\circ - ( {23}^\circ-\theta)}-\sec( {23}^\circ - \theta) \\ \end{array}\]

\[\begin{array}{l}=\sec( {23}^\circ -\theta) - \sec( {23}^\circ - \theta) \\ \\ \end{array}\]

\[=0=R.H.S.\]

Concept: Trigonometric Ratios of Some Special Angles
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 7.3 | Page 314
Share
Notifications

View all notifications


      Forgot password?
View in app×