# Prove that:  cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A - Mathematics

Sum

Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A

#### Solution

Consider LHS:
$\cos A + \cos 3A + \cos 5A + \cos 7A$
$= 2\cos \left( \frac{A + 3A}{2} \right) \cos \left( \frac{A - 3A}{2} \right) + 2\cos \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right) \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}$
$= 2\cos 2A \cos\left( - A \right) + 2\cos 6A \cos\left( - A \right)$
$= 2\cos 2A \cos A + 2\cos 6A \cos A$
$= 2\cos A(\cos 2A + \cos 6A)$
$= 2\cos A \times 2\cos \left( \frac{2A + 6A}{2} \right) \cos \left( \frac{2A - 6A}{2} \right)$
$= 4\cos A \cos 4A \cos\left( - 2A \right)$
$= 4\cos A \cos 2A \cos 4A$
= RHS
Hence, LHS = RHS.

Concept: Transformation Formulae
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 8 Transformation formulae
Exercise 8.2 | Q 6.2 | Page 18