Advertisement Remove all ads

Prove That: Cos 6x = 32 Cos6 X – 48 Cos4 X + 18 Cos2 X – 1 - Mathematics

Prove that: cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 – 1

Advertisement Remove all ads

Solution

L.H.S. = cos 6x

= cos 3(2x)

= 4 cos3 2x – 3 cos 2x [cos 3A = 4 cos3 A – 3 cos A]

= 4 [(2 cos2 – 1)3 – 3 (2 cos2 x – 1) [cos 2x = 2 cos2 – 1]

= 4 [(2 cos2 x)3 – (1)3 – 3 (2 cos2 x)2 + 3 (2 cos2 x)] – 6cos2 x + 3

= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3

= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3

= 32 cos6– 48 cos4x + 18 cos2x – 1

= R.H.S.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

NCERT Class 11 Mathematics Textbook
Chapter 3 Trigonometric Functions
Q 25 | Page 74
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×