# Prove That:Cos 40° Cos 80° Cos 160° = $- \Frac{1}{8}$ - Mathematics

Sum

Prove that:
cos 40° cos 80° cos 160° = $- \frac{1}{8}$

#### Solution

$LHS = \cos 40^\circ \cos 80^\circ \cos 160^\circ$
$= \frac{1}{2}\left[ 2\cos 40^\circ \cos 80^\circ \right] \cos 160^\circ$
$= \frac{1}{2}\left[ \cos \left( 40^\circ + 80^\circ \right) + \cos \left( 40^\circ - 80^\circ \right) \right] \cos 160^\circ$
$= \frac{1}{2}\left[ \cos 120^\circ + \cos \left( - 40^\circ \right) \right] \cos 160^\circ$
$= \frac{1}{2}\cos \left( 160^\circ \right)\left[ - \frac{1}{2} + \cos 40^\circ \right]$
$= - \frac{1}{4}\cos 160^\circ + \frac{1}{2}\cos 160^\circ \cos 40^\circ$
$= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ 2\cos 160^\circ \cos 40^\circ \right]$
$= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 160^\circ + 40^\circ \right) + \cos \left( 160^\circ - 40^\circ \right) \right]$
$= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos 200^\circ + \cos 120^\circ \right]$
$= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 360^\circ - 160^\circ \right) - \frac{1}{2} \right]$
$= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\cos 160^\circ - \frac{1}{8} \left[ \because \cos \left( 360^\circ - 160^\circ \right) = \cos 160^\circ \right]$
$= - \frac{1}{8} = RHS$

Concept: Transformation Formulae
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.2 | Page 7