Advertisement Remove all ads

Prove That: Cos 2 45 ∘ − Sin 2 15 ∘ = √ 3 4 - Mathematics

Answer in Brief

Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]

Advertisement Remove all ads

Solution

\[\cos^2 45^\circ - \sin^2 15^\circ\]
\[ = \cos\left( 45^\circ + 15^\circ \right)\cos\left( 45^\circ - 15^\circ \right) \left[ \cos^2 X - \sin^2 Y = \cos\left( X + Y \right)\cos\left( X - Y \right) \right]\]
\[ = \cos60^\circ\cos30^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\]
\[ = \frac{\sqrt{3}}{4}\]
Hence proved.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 15.1 | Page 20
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×