Advertisement Remove all ads

Prove that 𝒕𝒂𝒏𝒉−𝟏(𝒔𝒊𝒏 𝜽) = 𝒄𝒐𝒔𝒉−𝟏(𝒔𝒆𝒄 𝜽) - Applied Mathematics 1

Prove that 𝒕𝒂𝒏𝒉−𝟏(𝒔𝒊𝒏 𝜽) = 𝒄𝒐𝒔𝒉−𝟏(𝒔𝒆𝒄 𝜽) 

Advertisement Remove all ads

Solution

`L.H.S = tanh^1(sin θ)`

We know that, `tanh^-1(x)=1/2log ((1+x)/(1-x))`

∴ `L.H.S=1/2 log ((1+sin θ)/(1-sin θ) )`

`R.H.S=cosh^-1 (secθ)`

We know that , `cosh^-1 (x)=log (x+sqrt(x^2-1))`

∴ R.H.S =` log(sec θ +sqrt(sec^2θ-1))`

= `log (1/cos θ+sin θ/cos θ)`    ...........`{sqrt(sec^2θ-1)=tanθ=sinθ/cosθ}` 

=` log ((1+sin θ)/cos θ)`

=` log (1+sin θ/sqrt(1-sin^2θ))`

=` log (sqrt(1+sinθ)/sqrt(1-sin θ))`

= `1/2 log ((1+ sin θ)/(1-sin θ))`

∴ `tanh^-1(sin θ)=cosh^-1(sec θ)`

Hence Proved.

Concept: .Circular Functions of Complex Number
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×